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XVI. Essay on the Resolution of Algebraic Equations : attempting
to distinguish particularly, the real Principle of every Method,
and the true Causes of the Limitations to which it is subject.
By Giftin Wilson, Esq. Communicated by Edward Whitaker
Gray, M. D. Sec. R. S.

Read June 6, 1799.

INTRODUCTION.

1. Tue practical management of algebraic equations, as far as
respects the solution of problems depending upon them, is well
understood ; but their general theory, being considered as an
abstruse and purely speculative subject, is no where, that I have
seen, so fully analysed, as with all the assistance to be derived
from the application of the principles of combination, it appears
to me it might be. |

2. The difficulties under which the higher branches of algebra
still labour are generally known. No degree of equations beyond
the second, is yet perfectly resolved: cubics present frequently
an irreducible case: biquadratics have, by several methods, been
reduced to cubics; but no formula exhibiting to the eye the
actual resolution of a biquadratic has yet appeared: and, for the
fifth degree, and all upwards, not even a clue which promises
a general resolution has been struck out, by the continued la-
bour and ingenuity of mathematicians for several centuries. -

8. This failure in the chain, beginning at the third degree,
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and its breaking off entirely after the fourth, have been very
puzzling and mortifying circumstances to the cultivators of
algebra. Having in the first degrees proceeded upon apparently
very general principles, and made a seeming progress towards
a’'general resolution of equations, it is provoking to find it sud-
denly interrupted, not to be resumed by any contrivance. Va-
rious causes have been assigned for so remarkable a difficulty;
but the generality of those causes, as commonly given, do not
reach the principle. It has been usual for operators, when they
found their methods fail, to look back till they could detect
some inconsistence or impossibility in their work, and to sup-
pose the difficulty explained, by pointing out the period at
which such an error is made. The power and richness of the
algebraic calculus affords numerous ways of compassing the
same thing ; and, as a// of them fail when applied to this object,
there is necessarily a point in every one of them, at which some
inconsistence or impossibility is introduced: thence, a number
of different causes may be imagined. In Dr. WarING’s Medita-
tiones Algebraice, (p. 182.) may be seen several concurrent rea-
sons assigned, why the methods there shewn, and Dr. WARING’S
own, (undoubtedly the most general of any of them, since it
proceeds upon one principle to the fifth degree,) cannot apply
further: but, all reasons drawn from the data of any particular
method, (like that commonly given for the imperfection in
CarpaN’s Rule, which I shall examine hereafter,) though very
just in themselves, cannot be conclusive: they indisputably
shew, why the precise method to which they respectively apply
must fail; but that does not exclude the expectation that some
other, founded upon different principles, may succeed. The
question therefore recurs: Is there not some paramount funda-
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mental reason for this general failure? If there can be shewn
to be any thing i the nature of abstract quantity, which ‘govekrns
the several orders of quantities from which equations are framed,
and leads directly to the distinctions and limitations practice
discovers, that will reach the difficulty at its source, and afford
the satisfaction desired.

4. I think, that by turning the course of our inquiry rather

to examine how we come to succeed at all, in resolving any de-~
gree of equations, than why our success is so limited, the true
principle upon which their resolution must depend will appear;
and with what probability, and by what means, (if possible,) we
may expect to render our methods more perfect. With this idea,
I shall take a concise view of the nature and resolution of equa-
tions in general; pointing out the common difficulty, and by
“what circumstances that difficulty is, in certain cases, lessened
or removed ; confining myself always to the principle of each
step, and a strict analysis of the result, avoiding all detail of
mere operation ; and, without pretending to much novelty upon
a subject already so beaten, I persuade myself, such an inves-
tigation wiil lead to some conclusions which have not been
remarked, and which are both curious and important,

CHAP. L

Of the Resolution of Equations in general.

5. EQuations, in that part of algebra which treats of their
general resolution, are usually considered to be reduced to one
general form, for the greater convenience of comparing them,
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i.e. to their lowest rational dimension, with unity always for
the coeflicient of the highest power of the unknown quantity ;
in which state, every simple equation is already resolved. The
resolution of all other degrees, is the finding the simple equations
of which they are compounded : but, to do this ina general man-
ner, it is evident we must seek, instead of the particular equa-
tions themselves directly, a general expression representing them
all; which general expression is called the formula of resolution,
such as, the common quadratic resolution, or that given for
cubics by Carpan’s Rule.

6. These formule, properly speaking, are rather the rever-
sion of an equation, than the resolution of it: for, although the
unknown quantity be evolved or reduced to a simple dimension,
the known parts are necessarily involved or affected with a surd
at least as high as the dimension of the equation, in order to
exhibit the proper number. of correspondent values belonging
to the unknown quantity in an equation of that degree. Thus,
the equation (2" — pxr 4+ ¢=0) and its common resolution
ELAERT]

2

(x = are both the same quadratic; only, under

the first form, the unknown quantity, being of the dimension
of the second degree, has two values; whereas, in the second
form, it has only one, and the double value is transferred, by the
quadratic surd, to the known parts on the opposite side of the
equation. Thus also, the equation (2’ — gr + 7 = 0) and the
Carpanic formula belonging to it (x = j/ — =+ N :: — ;_j}

3 ; s . .
4 —5—v 7 —5)are in the same manner, the same

cubic merely reverted. But, as equations are usually denomi-
nated from the dimension of the unknown quantity, these reso-
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lutions are commonly deemed simple equations: they may in
this view be defined to be, the simple equations that the original
quadratic, cubic, or other higher given equation, confained in
power, since they express the nature and form of a quantity
which, by involution or reverting the operation, re-produces it;
as the root of any power, being reinvolved, returns to the power
from which it was extracted. This fixed and visible connection be-
tween the equation and the general formula for its roots, throws
a beauty and elegance into the method of pure algebraic reso-
lution, which none of the others, such as the method of divisors,
and all the contrivances for approximation, can pretend to.-
For, when by any of those methods we have obtained one or
more separate roots, the relation to the original equation is no
longer perceivable; but bere the chain is perfect. The equa-
tion leads to the resolution: the resolution embraces at once
all the correspondent roots ; and, when reinvolved, proves the
operation, by reproducing the original equation. Thus, for
example, if (2" — 52 + 4==0), and it be perceived, or found
by any conjectural method, that unity is one of the roots of
that equation, there is no discernible connection between the
simple equation expressing (z == 1) and the original equation;’
no transformation of one will produce the other. This latter
equation (z = 1), though truly expressing a numeral root of
the former, is no more a resolution of it than of the equations
(2" — 6z + 5 =0), (2*— 72 + 6 = 0), or any other of
the infinite number of equations of which unity is a root;
whereas, the algebraic resolution of (2*— 52 4 4=0) vz

siﬂ/zs.—xG)
Ao B

(x= , which equally expresses (1), and (4) the

other root, needs only to be cleared of its radical, to shew itself
MDCCXCIX, N n
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but another form of the same equation; and gives (=52
- 4 = o) as at first.

7. This view of the algebraic resolution of an equation
shews, that it does not so much aim at giving us the roots
themselves, as the basis or common principle of their artificial
combination in the equation to which it applies; pointing out
some form of a perfect power, of which they may be conceived
to be the correspondent natural roots. From which it follows,
that if the transformation required to be made in the given
equation be possible, or such as can really be effected, the
resolution will be real; for every real power has some real
root: but that if, on the contrary, the power into which the
equation is conceived to be transformed be merely imaginary,
the resolution must be so too; for all the roots of an imaginary
power are themselves imaginary. It doth not therefore depend
upon the nature of the roots of the equation themselves, but on
the form which the equation must assume to become a perfect
power, to determine, whether the resolution be real or imagi-
nary: so that the nature of the resolution, and that of the
roots of an equation may be very different, as we know is fre-
quently the case; particularly in the resolution of cubic equa-
tions by Carpan’s rule, where, when the roots are real, the
resolution is almost always imaginary. This has seemed to
surprize and perplex some writers very much, who have treated
it as at best a paradox, if not a contradiction,* but surelj
without cause; for, as the formula affects only to be an ideal
representation of the mechanism or structure of a perfect power

* Vide Prayrair on the Arith. of Impossibles, Phil. Trans. 1778, p. 318; Dr.
~Hurron on Cubic Equations, ditto, 1780, page 387; and Mr. Baron MasERES,
* Seript, Logarith, Vol. II. p. 456.
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answering to the given affected equation, it may be expected to
be clear or complicated, real or imaginary, zot as the roots
themselves are simple and real, but as the principle of their
union, of which only it is truly the index, is near or remote: it
merely shews the central point of their combination, which,
like the centre of gravity, suspension, or any other power, may
not actually exist in any of the bodies whose motions it governs,
but in some imaginary point without, and remote from them
all. Had the nature of the algebraic resolution of an equation
been considered in this light, and the forms to which they are
proposed to be reduced, been compared with the original forms
of the roots in the given equation, no surprize or appearance of
paradox could have arisen in the matter; but it must have been
clearly perceivable, what cases would admit of 7eal, and what
only of imaginary resolutions, as will be shewn hereafter.

I have dwelt the longer upon the nature of the algebraic reso-
lution of an equation, because it is a very curious subject, about
which many errors and inconsistencies have been fallen into,
though hardly any direct examination of it is to be found in
any of our books. It is the sole method of obtaining a com-
- plete general answer to any problem. It makes algebra con-
sistent with itself, and sufficient to solve its own difficulties,
without foreign aid, (from series or other branches ;) and, in
all cases where any general ulterior use is to be made of the
resolution of an equation, is the only method that avails at all.

8. In order to obtain this general resolution, the common
methods have been, (without considéring the nature of the
roots,) to attempt some universal reduction in the forms of
equations; as,

Nne
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ist. The destroying their intermediate terms, and converting
~ them into pure powers. ' Or,

adly. The discovering some constant complement which will
always raise them to the nearest perfect power. In both which
cases, the resolution will afterwards be nothing more than
simple extraction of the proper root. Or,

gdly. The assuming some convenient formula with indeter-
minate coefficients; and, by assigning their values properly,
adapting it to every case.

It would be going to too great a length, to give distinct ex-
amples here, of the application of these methods. Numerous
instances of each of them are given in the common books of
algebra, which usually treat them as separate and distinct from
each other; but the fact is, they are all in truth the same.
Whoever tries them separately, will find, however variously
they seem to set out, they lead precisely to the same conclu-
sions, and fail precisely in the same points. A quadratic, whe-
ther resolved by completing the square, or by expunging the
second term: a cubic, whether resolved by CArRDAN’s rule, or
by completing the cube, or by assuming a resolution, as sug-
gested in Dr. Waring’s Meditationes Algebraice, (p. 1779, 180.)
present the same formula of resolution, and the same limita-
tions and irreducible cases. And the reason is easily found. To
complete the requisite power, (according to the index of the
equation,) or to destroy the intermediate terms, occasions an
alteration in just the same number of terms; it is only the parti-
cular relation they are required to bear to each other that is
varied. In the one case, they are all to be equal, (or equal to
nothing ;) in the other, to correspond respectively with the
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known law of the binomial theorem, which gives the uncize of
a regular power. Both depend upon the practicability of a more
general problem, of which they are but specific cases; viz. the
problem « o give the coefficients of an equation any general de-
terminate relation.” If that were practicable, and it were possible
to mould them so as to establish a general relation between them,
(or any required number of them,) it is easy to perceive, that the
particular relation must be a secondary consideration ; and that,
wherever the same number of terms are to be acted: upon; the
same means that might make them equal, might give them any
other proportion at pleasure.

9. However, of all these methods, and any other of the
kind, it is to be observed, that the principle is demonstrably a
false assumption. For, if it be once admitted that the construc-
tion of equations, and the laws of the successive coefficients
received ever since VIETA’S time, be true; or that all equations
are formed invariably in the same manner, from the continual
multiplication of the simple equations of their roots, which ex-
perience confirms without any exception ;* it follows, that the
nature of the roots must infallibly govern that of the equation

~derived from them; that the same form of equation can only
be produced by the same forms of roots; and therefore, before
all sorts of equations can be made into pure or perfect powers,
or be given any other general shape, it must be shewn, that a//
quantilies are capable of taking the forms required to produce
equations of that sort, which will presently be seen to be impos-
sible. If those who have lost their time and labour in vain

* Some algebraists, affecting to reject the use of negative quantities, have been
compelled to dispute the generally received theory of the construction of equations ;
but they have not heen able to suggest any other,
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endeavours to improve these general methods, had, instead of
involving themselves in a labyrinth of substitution and process,
upon the chance of some means of simplification presenting
itself, considered beforehand the probability of success, the
imperfection of CArpaN’s rule would never have appeared a
paradox, nor the interruption of all further progress by it have
given room for surprise. They must have seen, that no equation
beyond a quadratic can admit of a rea/ extinction of its inter-
mediate terms. In the general equation (x"— pz"—* 4 ga*—2
—r2*—3 4 s2"—¢ &¢. == o), (p) being the sum of the roots,
and (¢ ) the sum of their combinations in pairs, by Sir 1. NEw-
ToN’s theorem for finding the sums of the powers of the roots,
(p*—2q) will be the sum of their squares; and therefore, if
both (p) and (¢q) vanish, the sum of the squares of the roots
must vanish also; which can never happen with real quantities.
Besides this, in attempting to destroy many intermediate terms
at once, we know by experience, the equations that become in-
cidentally necessary to be solved, rise to a much higher dimen-
sion than the given equation; so that our labour, in this respect,
defeats itself. |

10. Nor will these difficulties be avoided, if we abandon the
idea of a general resolution, and attempt to work out the roots
separately : although the number of coefficients is always suf-
ficient to afford a distinct equation to each root, and therefore,
by the common principles of indeterminate equations, will
clearly determine them all; and would also find them, if the
equations afforded by the coeflicients were all of the same de-
gree; but they rise successively, and, from the drawing them
together, in order to expunge the several unknown quantities,
the index of the reducing equation increases so as to defeat the
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operation. To shew this, let us recur to the general equation
before given (2"—pa*—* 4 q2"—?* —rz"—8 4 s2"—t==0);
suppose its (7) roots to be represented by (a, b, ¢, d, &c. n*),
then, by the construction of equations, we have (z) distinct
equations from the several coefficients in succession; viz.

a+b+c+d€9’c;....+n - - innumbef(n)—_—-p,
ab+ac+‘ad&5’c. - - = - - (nx-”—:-L)=q,

2

-— 1 —_—2
abc +abd &e. - - - - wx— x"3 =7,

(abcde &c. n), or the product of them all, being the coeffi-
cient of the last term. Now, as we have () equations, and (1)
“indeterminate quantities, it is evident, that by employing each
equation successively to determine one quantity, the whole will
be determined. But the equations are not all of the same degree:
the first, is a simple equation : the second, being composed on
one side wholly of products by two, is in degree a quadratic;
the third, for the same reason, a cubic; and so on. If the first
of these equations be used to determine (), we shall have
(a2 =p — b—¢—d &c. — n); inserting that value for (a)
“in the second equation, it becomes the quadratic (pb — b*4 pc
— 4 pd —d* — bc — bd &c. = q). If that quadratic be
solved to determine ('b), and the values of (a and & ) be inserted
in the third equation, it becomes the cubic (¢* &ec...=r).
Moreover, the quadratic having fwo roots, its solution will have

* The nature of the roots js not material in this place; whether affirmative or
negative, real or imaginary, they have just the same operation in forming the coeffi-
cients of the equation. I have however throughout chosen, wherever I could, to
give examples capable of being tried by real and affirmative roots ; and, for that pur-

pose, have uniformly made the signs of the coefficients alternately affirmative and
negative,
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introduced a quadratic surd. Before therefore we can proceed
to employ the third equation to determine (¢), it must be squared
to clear it of that surd, and of course will then rise to the 6th
degree. The solution of such a dimension (if admitted for the
present to be equally possible) must introduce higher radicals 5
and, by the intrusion of these superfluous roots at every stage,
our labour increases, instead of diminishing. This is the diffi-
culty alluded to before; and, as we have appropriated already all
our subordinate equationé‘, we have nothing to oppose it. It
therefore seems hopeless, to expect to make any general im-
pression upon indeterminate equations, without more help, be-
yond the mere knowledge of the constitution of the coefficients.
11. This difficulty, however, is wholly removed by the least
circumstance that discloses any particular relation amongst the
coefficients of an equation, independent of the general law of
their construction. This, of course, whenever it occurs, fur-
nishes new conditions and means of comparing the terms.
Every particularity in the coeflicients that gives specific varieties
to the forms of equations, must, from the nature of their con-~
struction, have its source in some particular relation between
two or more of the roots, and therefore, as far as that relation
extends, detects them infallibly. The observation of the forms
and relations of the coefficients under different species of equa~
tions, and the correspondent inferences to be drawn, as to the
connection of their roots, would form a curious and very useful
part of a complete treatise upon the whole doctrine of equations,
which is a work much wanted. The most striking of these rela-
tions will be obvious, or familiar, to the reader who has at all
considered the nature of the subject; such as, that equations
deficient in every alternate term arise from pairs of equal roots
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with opposite signs (==a, ==b &¢.); that those whose terms
on both sides the middle term are alike (which are generally
called recurring equations) arise from pairs of roots, of which

each pair contains a quantity and its reciprocal ( a 71—, b, —;)— . );

together with MacLAURIN’s demonstration of the particularities
of the coefficients when an equation has equal roots.* And the
extent to which these notices might easily be carried, from
observation of the effects of the different sorts of proportion,
and all other relations, is prodigious. But my present con- -
cern is merely with the result, supposing from any means a
relation to be previously discovered affecting any number of
the roots. For example,—suppose, in the above given equation,
(x7—pa*—* 4 qz"—* — rx" 8 4 sz*~+Fc. = o), whose roots
we called (a, b, ¢, d &c. ... n), we happened to know that two
of the number (a and b) were equal; then, since they might
both be expressed by the same character, the (z) roots of the
equation might now be represented by only (# — 1) distinct
characters; and therefore, of the subordinate equations derived
from the construction of the coefficients, two might be employed
to determine one root. (a and b) being equal, the equation fur-
nished by the value of the coefficient (p), and also that fur-
nished by the coefficient (q), may be both together used to
determine the same quantity. But, if any quantity (a) be a root
of an equation, the simple equation (£ — a = o) must be a di-
visor of that equation ;- therefore here (z — ) must be a
common divisor of the two equations furnished by (g and ¢),

* Vide Macravrin’s Algebra, chap. iv, p. 162, et infra.
4+ Vide Sanprrson’s Algebra, Vol. ii. p. 679, 680, Art. 432, and all algebras
on the method of divisors.

MDCCXCIX. Qo
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and consequently may be found, without resolving either of them,
by continual division or subtraction, according to the ordinary
rule for finding the common measure.*

12. Any other relation from the knowledge of which one
character may be made to represent two or more roots, evi-
dently answers the same end. Indeed all relations of that kind
may be converted into equality itself, by taking, instead of the
given equation, some other properly derived from it. Thus if,
instead of (2 and b) being the same, (b) had been supposed the

‘negative of (a) or (— a), and then, instead of the former equa-
tion, that of the squares of the roots were taken, the relation
would be made equality; for (a) and ( — a) have the same square.
If arithmetical proportion was known to be the relation of any
number of the roots, by taking the equation of their differences,
it would also be converted into equality.

1g. If three or more roots, or any number of parcels of roots,
are known to- be related, and their common relation be used
to represent them, of course the number of distinct characters
to be determined will proportionably be diminished : and, as the
number of subordinate equations furnished by the coeflicients
remains always the same, while the dimension of the proposed
equation is unaltered, more of them may be used together to
discover the related roots, and their investigation be propor-
tionably facilitated. This single observation, in the hands of a

* Vide SanpErson’s Algebra, (quarto ed. Vol. i. p. 86, 87, 88,) where the rule
is well given; and Macravrin’s Algebra, (P. Il cap. iv. p. 162.); or Mr.
Herrins’s Essay upon the Reduction of Equations having equal Roots.  But of the
last it should be observed, that some qualification must be made to the assertion,
that the reduction may be carried on till a simple equation is obtained. In cases
where there is only one pair of roots equal, that proposition is undoubtedly true; but,
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skilful analyst, is sufficient for the reduction, if not the solu-
tion, of any particular numeral equation whatsoever, and the
more so the larger its dimension: for, from the endless variety
of relations numbers bear to each other, hardly any set of them
can occur, as the coeflicients of an equation, or perhaps exist,
that, upon being compared, do not exhibit some peculiarity (of
greater or less extent) sufficient to afford a clue to the corre-
spondent relation in their roots. And, if no such clue is imme-
diately given by the equation itself, taking the equation of the
differences or sums in pairs, or of the squares, &. of the roots,
will soon find one. But, as peculiarities of that sort (though
never so frequent) may be deemed always accidental, and evi-
dently, no general method can be founded upon them, even
where the coefficients are given, it may be asked, How any use can
be made of them in cases of indeterminate equations ?

14. To this I answer, that there are some properties of quan-
tities that depend only on the index of the equation, without
any regard to the value of its coeflicients; or, in other words,
there are some peculiar properties which merely depend upon
the number of any set of quantities, abstracted from all conside-
ration of their nature and values. For example, two quantities
(@) and (b) have their differences the same quantity (¢ — b), only*
taken both affirmatively and negatively, (a — ) and (6 — a);
when squared, these differences become equal; (a*— 2ab 4 b%)
is the square of both: therefore, let the quantities themselves
be chosen as they may, the equation of the squares of their

if 2, 3, or more pairs of roots are equal, the reduction can only be carried down to
a quadratic, cubic, &¢. for, every pair of equal roots being equally to be found by
the method, of course the final or resulting equation must be of a dimension as great
as their number.

Qo 2
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differences must have both equal roots, and consequently be re-
ducible by the reasoning in Art. 11, 12, and 13. Again,
three quantities, however distinct in themselves, give a.set of
differences marked with a peculiar relation, any two of them
being equal to the third; (a, b, ¢,) being three quantities,
(a— b4 b —c=a—c¢). Also, if the three quantities be so cho-
sen originally as to have their sum equal nothing, one of them
must necessarily equal in magnitude the sum of the remaining
two; and therefore, whether taken simply or summed in pairs,
their relative magnitudes must remain the same. Again, four
quantities, of any sort whatever, may be pursued to a constant
relation, though somewhat more remote, and grounded upon
very different causes; viZ. (a, b, ¢, d,) being four quantities,
from their combinations by pairs (ab, ac, ad, be, bd, cd,) six in
number, added together two by two, thus,

(ab 4 cd)

(ac + b0d)

(ad + bc)
three quantities are formed, sufficiently distinguished from the
group of similar combinations to be found separately, as will
be shewn hereafter. And also, if the four quantities are origi-
nally so taken as to have their sum equal to nothing, their
sums in pairs, though six in number, will be reduced to three
in effect; for,if (¢ + b+ c 4 d= o), by transposition,

(a+b=—c—4d)
(a4c=—b—4d)
((l—l—d::—-—b-—-c)

i. e. three of the six must be merely the negatives of the other
three; which relation, if they are squared, will become equality,
so that the number of distinct squares will be only three. These
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properties, though without any order or connection, and confined
merely to particular ranks or numbers of quantities, being ge-
neral to all possible or imaginable quantities of those classes,
afford methods general, as to those degrees, but without pro-
ducing any result really general to equations at large.

15. Having shewn that an indeterminate general equation
cannot be resolved by any of the methods whose principle is
yet known, because they are all grounded upon the assumption
of some particularity, either inherent in the roots, or universally
communicable to them, which, so far from being general, is
seldom found, and absolutely incompatible with many sorts. of
roots; that the difficulty is in all cases the same,—the intrusion
of superfluous roots and higher radicals ; that a relation of any
kind (when known) obviates that difficulty, as far as it extends;
and that some orders of quantities have generally a constant and
necessary relation, more or less remote, I proceed to examine,
more minutely, the application of these observations to the se~
veral degrees of equations to which they materially apply.

CHAP. IIL

Of the Resolution or Reduction of Equations of particular
Degrees..

16. IN examining those degrees of equations which submit
to be resolved, I shall observe the same order as I did before;
2. e. first consider the power of obtaining a general formula, or
complete resolution ; and, if that is not attainable directly, in-
quire by what general means the roots can be separately inves-
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tigated, and what new forms they have taken, or what different
functions of them are used in the operation.

17. If we resume the general indeterminate equation
(" — px*—* 4 qx"—* — ra*—3 &c. = o), and assign the pro-
gressive values (2, g, 4 &¢.) to the index (), in the first case
it will become the quadratic (z* — px + ¢ = o). Now, as this
equation has two roots, in order to obtain a general formula for
its resolution, the first step that suggests itself is, to inquire
what is necessary to construct a general representation of two
quantities in a simple equation. Two quantities are known to be
generally expressed by means of their sum and difference; that
half their sum added to half their difference gives the greater, and
the same quantities subtracted, the lesser. The sum being al-
ways the coefficient of the second term of the equation, is given
- in all cases, and bere the difference is readily found; for, the
square of the difference of any two quantities differs from the
square of their sum by a constant quantity, viz. four times their
product or the coefficient of the third term. If (a) and (b)
be called the roots of the equation (z*— px 4 ¢ =0); then
(p=a+b)and (p’=a"+ 2ab 4 b*),

{(g=ab)and (—4qg= — 4ab ),
the square

whence (a’—gab+ b'=a—b'= p’-«ﬂ{ of the dif-
ference.

The difference itself is therefore (v/p* — 4¢). And now, being
possessed of the parts required to construct a general repre-
sentation of the two quantities, we can at once complete the
formula of general resolution of equations of this degree, viz.

piﬁ"—'ﬁ)'

e =22

This, as I observed before in Art. 6, is however the same qua-
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dratic, only reverted; for, the quadratic surd it contains is.
frequently incapable of further reduction. Therefore, gene-
rally speaking, the degree of the equation is not altered ; only
the place of the index, which being first affixed to the un-
known quantity, is now transferred to the known ones. But
nevertheless, this resolution is, in al/ cases, equally true and
direct ; for, involving no other radical than belongs to the de-
gree it relates to, it faithfully exhibits the nature of the roots,
and is always rational or real, or not, according as they are so.
18. If, instead of seeking, a priori, the formula of resolution,.
we attempt to find the roots simply, we may instantly trace a
constant connection between them, or at least between their-
differences; which (however the quantities are varied) are
always related in the same manner, being (a — b) and (—a 4 b)
the same quantity with different signs, and consequently their
squares precisely the same, From which it appears, that the
equation of those differences will always want the second term:
or be a pure quadratic; and that of their squares will be a per-
fect binomial square, having both roots equal; which roots may
therefore, by the reasoning in Art. 11, be certainly found. But
the inference is just the same as before: the equation is not
lowered in degree ; the equal relation is brought no nearer than:
between the squares of the differences; and, when zbey are found,.
the same quadratic surd must be used to arrive at the roots.

. . Vv opro_ .
themselves. This formula of resolution (z‘ = -ﬁ—i——-zl’—-—ﬂ) is

the same given for quadratics in every algebra; but it is not
usually remarked, or perhaps understood, that the whole opera-
tion, however varied in appearance by setting about to com-
plete the square (as it is called) or to destroy the second term;
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is merely employed to obtain the difference of the roots; that
(upon analysing the formula) the part under the vinculum is
always that difference, and nothing else, and why it must
be so.

19. Next, let (n=g), and the equation be the complete
cubic (2'—pa* 4 gz —r=0). If we make it our first step
here, as in the last case, to inquire what is necessary to con-
struct a general representation of three numbers in simple
equations, we shall find it must consist of the same parts, the
sum and the differences : but, as the differences increase in
number, to show the order in which they are taken, and the
law they observe progressively, I shall subjoin a general table
of the simple representation of the different orders of quantities.
As in every equation the sum of the roots is always given, I
shall, for greater simplicity in my table, suppose it always to
vanish. If then there be a series of general equations, begin-
ning with a quadratic, and proceeding upwards with progres-
sive indexes, in all of which the coeflicient of the second term
(p) be taken = (o), and (A) be supposed a difference of the
roots of the first, (A) and (B) two of the differences of the roots
of the second, (A, B, C,) three differences of those of the third,
and so on; in taking of which differences, no other caution is
necessary than that they should be similarly situated, viz. all
derived by comparing the same individual root with the remain-

ing ones, as if (a) be taken as a root, and (a — b) be the first

difference, (¢ — ¢, a —d, a — e Yc.... a —n), baving all the
same antecedent letter (whose number will always be (n — 1)),
must be the rest; then, the table will be as follows :
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Table of the simple Representation of the Roots of Equaiions of
progressive Indexes.

In quadratics,
A
2

L = %=

In cubics,
A .|_ B

A_B

..I_

2
L_A+B

2

In biquadratics,

A4+B4C
4 .
A—B B4+ C
x:ﬁ ‘o n C{+ 3 3
a — -
—_ —S) A C+B_C
l 3
3 3
In the fifth degree,
(A+B4+C4+ D
5
+A-—-B B+C B4D
T = 4 4 4
A—C , B—C Ca4D
Tt
~AzB=C=D Ty 3D . CcoD
| 4"5 — - —
Tt ——+—
__A+B___A+C A4+ D
L 4 4 4

MDCCXCIX. Pp
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In the (nth) degree, or generally;

”A+B+C+D+;‘E&>°c ..... (n—1) in number
[ A=B_2+Cec 72 in number
L=< Z:lc nB—._Ic‘@,
hvecopopeed hh iTh
i ra—— +——=—+-= -

A—E  B—E o

L+n~—1+n—-1 ¢

20. The inspection of the table shews us, that in al/ cases,
to construct a general simple representation of any number of
quantities, and consequently to construct a direct resolution of
their equation, we must first find a certain number of their dif- -
ferences; but we have no general means of separating particu-
lar differences from the rest; and the whole number of diffe-
rences increases in a proportion so much greater than the
number of quantities, that the former difficulty recurs, the pre-
vious steps involve higher dimensions than the original equation.
The original index being (n), that of the equation of the dif-

ference of the roots is (7 x n—1 ). However, from the nature
of differences, (being taken both affirmatively and negatively,)
all equations formed from them must (as observed of quantities
of that sort in Art. 11.) be universally deficient in every alter-
nate term, which brings their equation to the form of equations

N o T
2

of only half their own index, or (7 x ) : but, in this case,

their differences are six, and their equation, with that cousidera-
tion, is reduced no lower than a cubic form, which is the same
degree with the proposed equation; therefore, it does not appear
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that we can be enabled, a priorz, to determine the formula of
any direct resolution of this case.

21. Let us then try to trace some relation which may convert
some or all of the roots, or some regular function of them, into
equal quantities; when, the equation of that function having
equal roots, of course those roots will be separately deducible,
as shewn in Art. 11, 12. In Art. 14, we may remember, two
particularities were mentioned to belong to three quantities,
viz. that their differences were so related as to be every two
of them equal to the third ; and that, if the quantities themselves
have their sum equal to nothing, two of them also must equal
the third, and their magnitude be respectively the same, whether
they are taken simply, or summed in pairs. To avail ourselves
of both these properties, let us suppose the second term to be
expunged from the given equation, (which we know may always
be effected, ) its form will then be (2 — qz 4 r==0),* and the -
sum of its roots equal to nothing. Let (a) and (b) be two of
its roots, the third will therefore be (— a —b); take their
sums by two (—a, — b, a 4+ b); take their differences
(2a + b, a4 2b, a —b) and their negatives, which may be
divided into two sets whose sum is nothing, like that of the

a—b a4 2b,—2a—>b
l—a+40b —a—ab, 2a+b}'
So that, from the given equation we derive three others, which
make a set of four exactly similar.

Toots, m'z

* Besides expunging (p), the sign of (g) has been changed ; because, in cases of
real roots, it will invariably become negative upon destroying the second term. Vide
note in p. 275.

Pp e
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1st. (z2°— qx 4 r=0) the given equation.

ed. (2* — qx —r=o0) that of its roots summed in pairs.

sd. & —ggs + VIF— A =0

4th, £ — gqr — Vg —orri =o
formed by dividing (z°— 6qz* 4 9¢*2* — 4¢’ + 271" = o),
the equation of the differences, into two wanting the second term.

22. Now, leaving these considerations for a moment, let us
speculate upoh the further reduction of the equation. If, instead
of the present form (z° — qx 4+ r = 0), (q) could be supposed
to vanish as well as (p), a still more powerful additional rela-
tion would be given the roots; for, the equation being then a
pure cubic, (2°===r), its roots would obviously be the cube
roots of (r), and all cube roots are alike. 1If (r) be a cube,
and (/r) be one of its roots, the remaining two are

two similar equations,

(—‘+V—3xyra11d —"‘V“f'xyr),let (r) be any quan-

2 2
tity whatsoever, real or imaginary. But it is clear, from what
has been before observed in Art. g, that this reduction is not
generally possible, since it supposes two contiguous interme-
diate terms to vanish together, which real roots do not admit
of: it must therefore be effected by means of some imaginary
assumption. Those who are conversant in the use of impos-
sible quantities, will at once perceive, that the addition or sub-
traction (which in surd quantities is always the same thing, as

they are equivocal in sign,) of the imaginary surd (\/ — —3;-)

to each root of the equation, will infallibly cause (¢) to vanish,

Givlie—a—btv=3

so formed, would not have their sum equal to nothing; and

but the new roots
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therefore, in destroying the third term, the second would be
revived, so that nothing would be gained.

2g. To understand how this difliculty is ever removed, let
us examine particularly some equation that wants both second
and third terms, and observe accurately the constitution of its

roots. The simplest of the kind is the pure cubic (2*=1), whose

—_—1 s — . . .
—-23~—i); but, to avoid fractions in the roots,

roots are ( 1,

let us take (x*= 8), whose roots are (2,— 1 ==+v/—3).
Distinguishing the real and the imaginary parts, the real are
(2,—1,—1); theimaginary are (== / — gor == gx /— 1),
which are the differences of the real parts, multiplied by the ima-
ginary surd (/ —%). It appears, therefore, that the roots of
a pure ‘cubic are compounded of the roots of some affected
cubic, added to their differences drawn into the imaginary surd
(/ —%). The real parts (2, — 1, — 1) are the roots of the
cubic equation (z'— gx 4 2 =0). The imaginary, of the
equation (x' + gz -+ * = o), or the roots of the similar equa-
tion of the differences of the former, viz. (2°— 9z 4 % = o),
drawn into the (/ — £); and, from their addition are formed
the roots of the pure cubic (z°=8). In constructing which, it
is material to observe, each root of the first equation is joined to
the difference of the remaining pair; but it may be remembered,
that three quantities whose sum is nothing, are the same when
summed in pairs, 7. e. eachis (in quantity) the sum of the other
two, therefore, each difference is in fact added to the sum of
the same quantities; and, if the question were proposed to re-
duce the equatio\n (£’ — gx 4 2 == 0) to a pure cubic, the rule
furnished by this example would be, to find the equation of
the sum of its roots in pairs, which, by the last Article, is’
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(2" —gx —2=0); tofind the similar equation of their diffe-
rences (2°— 9z -+ % == 0); and, to find the equation produced
by the quantities formed from the addition of the roots of the
one to those of the other multiplied into the imaginary surd

(/—1). The equation last found would, however, be of the
dimension of the gth power, at least: for, the addition of each
root of the second equation to every separate root of the first,
produces a separate quantity : thus,

2,—1, — _ -
(bemg tberootsoftbeut)J oo I’ e . e 11
(0,4 v/—8y—y/—3g) | 2T 3V o138V —h 18V — 5

those of the od. - L2~3¢_%,_1_;3\/_§,_1__3\/_?J
will be the nine quantities formed by their addition. But we

have a decisive clue to distinguish some from the rest; for we
know, that if we find the equation of the cubes of those quan-
tities, it must bave three equal roots ; for, every time the sum of
two of the roots of the first equation meets its own difference,
it will constitute a cube root of (8), and therefore, the equation
(z*—8=0) will be three times contained in the resulting
equation of cubes. That equal root being discovered by the
method of finding equal roots, so often alluded to before, re-
duces the equation (z'— gx 4 2 = o) to the pure cubic
(@=8).

24. The instance in the last article, of the reduction of the
equation (2’ — gx 4 2==0) to a pure cubic, by means of
the equation (2°+4 gx =0), evidently depends upon the
coefficient of the second term vanishing; and also, that of the
third term being the same in both, but of opposite signs. For,
the roots of the one, in their combinations by two, producing
(— g), and those of the other (4 g), of course destroy each
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other; and, as the sums of both equal nothing, when added to-
gether their sum will still be nothing; so that 7o new second term
can arise, as in Art. 22. If we now return to the considerations
in Art. 21, where we shewed how to derive from every cubic
cquation (' — qx + r=0) wanting the ed term, a similar
equation (2* — gqx 4- v/44° — 2771=0), being the equation
of three of the differences of the roots of the former, so arranged
as to want the second term also, we may perceive that, to ren-
der the third term the same in both, we need only divide the
roots of the latter by (/3), or, which is the same thing, mul-
tiply them into the (/). For, the equation (2°— gqx -
v/ 4¢° — 2771= o), when its roots are multiplied by the (,/1),

becomes (ﬁ —qr + v”g;;” | = o) *If, by the same rea-

son, they had been multiplied by the (,/— 1), it would be

(x + qz + ;’V:%r— = o) ; where the sign of the coeffi~

cient of (z) is opposite to that of (¢) in the given equation.
Therefore, the roots of the equation (z°— gz 4 r=o0), and
that of its differences, multiplied into the imaginary surd /—1,

viZ. (x +qx + V4 ;’ V':_Z;' — = o) will, by being added toge-

ther, (according to the method in the last Article,) lead to a re-
duction of that equation to a pure cubic; 7. e. the equation
formed from their addition will have three roots, whose cubes
are the same.

25. The analysis of the pure cubic gives us the following
general properties, belonging to any set of those equations whose
sum is nothing.

Viz. 1st. If three such quantities (a, b, — a — b) be added

* Vide SanDERsoN’s Algebra, Vol. IT. p. 6885 and HavLr’s Analysis, p, 146.
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in pairs, and three of their differences be also taken so as to
have their sum nothing, (¢ — b, a 4 2b, — 2a — b); if then
each sum be formed into a binomial, by joining to it its corre-
spondent difference multiplied by the imaginary surd /— 1,
the quantities so formed
atbta—byv—1
—atateby/—1L
— b — 2u — blv/— L will have the same cube.
Example 1st,
atbta—bly—3
a+b+a—bly/—1
a0 2t hxa—by —1
=
3
i@ﬂ:+2~mxm\/~§: a+b+a-——bls/-——§\z
a+bt+a—bv—1L

2a34 104*b 4 10ab*+ 2 b3
3

—

+e.a4bxa—bv—1
+2~m;xm V—1

283 4 2a%b+ 2ab*—2b3 b "—‘“‘“
_ 2@ +2a a z ’ +i-§——xa———b\/-—--%-

\ 3

e R e DT )
—a+4a+2bv—L
—a+4a+ 20V — 1L

z___. 2~ ‘§ /-——-...!.
a'—2a"—4ab v L
—a*—4ab — 4b*
3

zr,.:?‘m4;ab__. b* = . 2
3 s —-—2a—-Q'abl\/-——%:_...-—a—q}-a-l—zb]\/—‘_;_]
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24% = 4 ab — 4 b 7
3 — 24" — 4ablV/— 1L
—a+4a+ebly/ —1
" 2a® 4 4a*b+ 4ab” z
—_ 3 + 24’ + 4a b\\/-—-—i—

za3-|-SaZb_{—Sab’_‘__la+zb\3 \/___I—

3 3

+a xa+ 2bv/—1

& « 12m—b+12ab7-+8a3+12a31:/-—13zab—-81ﬂ ‘~a+m—\\/_j

—b—2a—b]v/—1
—b—2a — \\/-—»§
b 4 4ab I 25|V —3

b*— 4ab —4a®
3

zb—-4ab-——4-a Q—WHb-I—QbZ\/ %_:__ —b—og— b]\/"‘?{‘r

-—-b-—za— ‘\/-——3'
3 2 2
S S L L YTy}

3

203 48ab*48a%b 2a..|-b'3
3 +=-V—s3

4 b x —2a — b/ — 1

2 —_— %
12a*b412ab +8¢13+12“ b—1zab Sb] .“--b—Q(l-— )\/""':\

———

b 3 V3
The quantity .
12a*b+12ab? 8a41za*b—12ab*—8H) Ty = ﬁa3+3a"b_3abz—2b’\\
: = a*btab l !
3 + 37/ —3 ! 4‘"( + + 37 —3

is therefore the common cube of those g binomials. Q. E. M.

Now let the equation of the g quantities (a, b, — a — b,)
be (2' — gz 4 r = 0); then, by the construction of equations,

MDCCXCIX, Qq
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(g=a*4ab4b*) and (4 @=4a°4 1205 bf240* D>+ 28 B3B3+ 24a* b4 12 a b5 4 459),
also (—r=a*b4ab®) and (27 1r*=- - - - = - - 27a* B>} 54 a3 D327 a* b* )

whence (49°—27r*=4a°f+122°b—=3a%*b0* =263 b3 =3 4% b* 412 a b5} 4 bF)

and its square root, or (¥'4¢°—27 r*|= 2 a*4 3 a* b—3 a b*—2 b%).

4xla*b4ab’| 4

2a%+3a*b—3 ab®— 253

W =3

‘-—4x[-——r+

Therefore, the quantity

Vi)
3V =3

The equation (z°—qx 4 r = o) may hence be reduced to a
Vro— )

4394/ 237 r‘} ), which,

when cleared of its irrational quadratic surd, becomes

: — =64 44327 : 64¢°

(°+ 8 ra + 167" = -—-——2-7———-—-), or (z°+4 8ra’ 4 —

==0); or, dividing its roots by (2) to reduce it still lower,

pure cubic of this form (z°= 4 x {r r -

q3 - . .
= 0), the common reducing equation ob-

tained by CARDAN’s rule.

Example 2d. Let (1, 2, — g), the roots of the: equation
(z*— %7z 4 6 =0), be taken; the binomials formed from them
will be, according to the directions of the rule,

-

142=+3 } Jml /e ] 3= —3  =2egy/ =3 =145y =3
L2z — I 3 3—1y/ — 1 —2—4y/ — % —1+5¢/ =3
1-—3—--—2}_ e 9~6¢~— 164/ =} 1==104/ X
143= 4 STV | — Iy R ¥
N. B. Itis necessary to change 2—§.—,6¢/-- ! % 6asf— X -E.’.'-Ib —
the sign of the middle diffe- 33__“/__3; o o H v 3:
rence, because their surh must —_— T 2— 4y — 145 -}

always — o). 1 . 2z g
Tayli o ATEvod o Fov—d
23 = = 1 }—x+5v...x EVTS Ty Bt

243= 45 il ; :

24—V =5 #U=Fv—7 24—y

The quantity (24— —-— is therefore the common cube of

3V =3
these g binomials.
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Ezxample 3d Let (— 1, — 4, + 5), the roots of the equation
(#* — 21 x — 20 = 0), which are the differences used in the
last example, be next taken;

Resolution of Algebraic Equations.

[~ 5+ 1/ =3 4+ 20/ —3 I— 35—3
—1—g= . — 5+ 1wW—=3 4+ 2¢/—3 1— 3¢/ =3
TITED stav—t= sty
2§—104/ =3 164164/ —3 1— 64/ —3
-_— 3 -—12 —27
::if_f_ig}Jerix/—-%: 4t2v/—3;  22—10y/—3 4+16y/—3 —26— 6y/—3
—- 5+ W=3 44 2v—=3 . 11— 3v/—3
- -3 —3 —26— 64/—3
—4t =41 1104504/ —3 164064y —3 —2
—f—§ = }+“‘W“f“ 1=V =3 sotaze/—3 —g64 8y—3 —54478V =3
L— 80+72¢/—3 —804724/—3 —804724/—3

which last cube, if divided by (g), becomes (— 22 4 24,4/ —3),
or exactly the reverse of the first; the reason of which will be
shewn in the next section of this Article.

Thecube (24—22,/ — 1), whenitsequation (r’=24—22/ — 1)
is made rational, gives the quadratic-formed equation of the 6th
degree (z°— 48 2°— + 576 = — ££22); or, transposing all the
terms to one side, and dividing it by (2), to reduce it, as before,
( — 62 3 4 3
common methods.

2dly. The differences of the three differences (a — b, a - 2,

— 2a —1Db) are (ga, 8b, g xa + b), or merely three times the
original quantitiés. Had, therefore, the differences themselves
been taken as original quantities, and binomials been formed
from them, according to the directions. before observed, those
binomials, and the ultimately resulting cubes, would differ from
the former, in nothing essential but the place of the surd. The
differences which were affected with it before, would now be

Qq e

==0); the same equation that results from the
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clear; -and the quantities themselves, or, which is the same
thing, their sums in pairs, be affected with it. However, as
these latter are to be multiplied by three, that multiplication will
destroy the fraction when they come again to be multiplied by
the surd (/— 1), since (gx o/ —% =4/ —3g). Wherefore,
‘the same end, as to reducing the equation, will be obtained,
whether, after adding the sums of the roots in pairs to their re-
spective differences, we multiply the sums by (\/ —g), or divide
the differences by it; as has been already shewn in the gd
Example to the last Section of this Article. |

gdly. If any cubic equation wanting the second term, be
transformed into the equation of that function of its roots,
formed of the cubes of the binomials arising from joining the
sum of each pair of roots to its correspondent difference drawn
into the imaginary fractional surd (,/ — 1), or each difference to
its correspondent sum drawn into the surd (,/ — g), the trans-
formed equation will have among its roots three equal cubes;
by finding which, according to the methods of finding equal
roots, the equation is reduced to a pure cubic.

4thly. The roots of a cubic equation may be a/l real; or
only one of them real, and the remaining {wo imaginary. If

only one be real, they will be of this form ( g, —1ELY ~ 1) ,

2
and, by taking their sums and differences according to the rule,
and multiplying the latter into the(,/ — 1), one of the resulting
binomials will be real, and the other two imaginary: the cube
produced by them will therefore be real. When all the roots
are real, if two be equal, one difference necessarily vanishes;
wherefore, the imaginary factor will only appear about the two
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that remain ; and here again, the cube produced will be real.
But, if all the roots are real, and unequal, their sums and diffe-
rences will a// be real : whence, al/ the binomials will involve
the imaginary surd ; which constitutes the irreducible case.

To give examples of this, let, 1st. (¢'— 2z 4 4=0), a
cubic equation, whose roots are (2, — 14/ —1,—1—4/ —1);
the binomials constructed by taking their sums and differences
as before, will be

2—14y/ —1=14/—1
2+1——J——1=3—¢'-—1}
2 —1—3/ —1=1—4/ =1

9+1+¢—1=3+¢—1}

-—:~1+\/-—-1—r-.1-——‘/-—-1:::: —
—_—1F /=14 14 ) —1= 2y —1
nomial — 2 F 2 v/ — 1], when the latter quantity (2 / — 1) is

, which last bi-

drawn into the imaginary surd (y/ — %), becomes (-—-— Q — 7—3)
a real quantity.
edly. Let (2*— gz - 2 =0) be proposed, whose roots

have been, in Art. 2g, shewn to be (2, — 1, — 1). Here

2 —1=-41

st ts)

2-——1__—|—1}

et 1=1+43
— 1 ==

— 2 : . . :
+ } This latter binomial must evidently remain
—141= o0

real, since the difference into which the imaginary factor was
to have been drawn vanishes.
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gdly. Let (z’— 7 x 4 6) be given, whose roots are (1, ¢ — g).
The binomials derived from these have been before given, in
the 2d Example to the first Section of this Article; and the
cube they produce shewn to be (24— 22,/ — L), the cube
root of which cannot be extracted ; it being from the quadratic
surd, it involves, in truth, not a cube, but a truncate sixth power
in a cubic shape: and when, to remove its equivocal state, it
is made rational, shews itself to be properly the sixth power
equation (z°— 6 2° 4 3£3=0), as before demonstrated.

26. This is the common reduction of a cubic equation, to one
of the sixth degree but in form a quadratic, obtained, by clear-
ing of its quadratic surd, the pure cubic formed by either of the
two sets of binomials before described; and this is the only
reduction of it yet discovered. Perhaps the method called Car-
DAN’s rule, is the shortest mode of effecting this reduction; but I
am not aware, that the real principle upon which it is founded
has been any where fully analysed and explained, except in
the foregoing investigation of it. The ordinary expositions of it
certainly disclose nothing of the principle, and are even in
many respects faulty; for they treat it as the effect of a suppo-
position or lucky conjecture, when, in fact, there is no supposition
or conjecture made ; a regular clue, furnished by certain demon-
strable peculiarities in some functions of this order of quantities,
being pursued, till such a relationship amongst the roots may
be inferred, as may be converted into equality at some known
period. They also fail to account for the most striking part
of the result; the irreducibility happening uniformly in' cases
where it has been supposed least to be expected, 7. e. when
the roots are real; which they refer to a particular limitation
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in one of the steps taken, when it is, in truth, of much deeper
origin than any particular method, being the necessary conse-
quence:of the constitution of the cube power.

2%7. The result of these observations upon cubic equations
shews, that directly they are not resolvable, i. e. they cannot,
like quadratics, be always brought to a mere extraction of their
correspondent root: that, however, by means of the peculiari-
ties inseparable from the number of three quantities, a relation
is discoverable, which inevitably gives equal roots to the equa-
tion of the cubes of a particular function of them; but that,
that function involves sometimes a quadratic surd which was
not in the roots themselves, but arose from the form necessary
to be given them; that the equal relation not taking place in
any case, till the cube of that function, and, in some cases, not
being rational, till the square of that cube, the equation is not
lowered in degree, by the operation, but rather increased.

28. Let (n==4), and the equation become the general bi-
quadratic (z*— pa’ 4 q2* — rz 4 s =o0), the number of
differences are twelve; we cannot, therefore, hope to obtain a
direct simple resolution. But, in Art. 14, two peculiarities be-
longing to sets of four quantities were pointed out, from which
it is easy to obtain a reduction of the equation to a cubic form.
The first peculiarity there mentioned, was shewn to subsist
among the sums of the combinations of the roots in pairs.
If (a,b,c,d,) be supposed the roots of the given equation,
and their combinations by two (ab, ac, ad, bc, bd, cd,) be
summed in pairs, though the number of quantities so formed
are no fewer than 30, yet there is an evident distinction ob-

- servable amongst them; for, in some, (the first six,) zo letter
occurs twice. If, therefore, instead of simply requiring the
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sums of the combinations of the roots in pairs, that function of
the roots had been required, consisting of the sums of these
combinations, into the forming of which no root enters twice,
only six out of the whole number of combinations of the kind
would answer that condition ; and those six would be the same
three repeated, for (ab + cd, and c¢d 4 ab &c.) are the same
quantities. So that the three quantities (ab + ¢d, ac 4 bd,
ad -+ be,) would be the functions required, and all of the kind
that can be made. Now, there is no proposition in the theory
of equations more certain, than that the equation of any regu-
lar function of the roots may always be found by means of the
known values of the coefficients.* As there are but three func-
tions in this case, the resulting equation must consequently be
a cubic; and, by taking the several combinations of the quan-
tities (ab 4 c¢d, ac + bd, ad 4 bc,), we may obtain their
equation,
vizg, (' —qx*+ pr — 4s]x —p's+ 4qs—1r"=0).

Therefore, the finding the equation of that function of the roots
of a biquadratic which arises from its combinations by two sum~
med in pairs, so bowever that no root shall occur twice in any
such sum, reduces the biquadratic to a cubic.

29. Another peculiarity of four quantities is also given in
Art. 14, i. e. that if taken originally so as to have their sum
equal to nothing, the six quantities formed from their sums in
pairs, will be the same three quantities taken both affirmatively
and negatively. Then we know, by the reasoning in Art. 11,
the equation of those quantities (though of the sixth degree)
will want every alternate term, or be of a cubic form; accord-
ingly, the equation of the function of the roots formed by sum-

* Warine’s Med, digeb. cap. i. pe 1. el infra.
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ming them in pairs, is x —--’Zir — m" z —--—i—‘ +
T——gp T Fop\xa—2 —fF =L+ =o*
~which, when (p) is supposed to vanish, becomes (2°— 2 gx* +
m_s]x’ —r*=0).
g0. These two methods, one applying to the biquadratic
equations complete in their terms, and the other to those from
which the second term has been expunged, are all that have yet
been discovered ; and, notwithstanding the number of different
methods attributed to different writers, which from their manner
of setting out appear distinct, they will all be found to resolve
themselves, in principle, into one of these. Dr. HutToN’s Ma-
thematical Dictionary, under the article Biquadratic Equations,
gives four methods; viz. FERRARI’S, DEs CARTES’s, EULER’S,
and SimpsoN’s; to which may be added another by Dr. Wa-
I{ING,“f“ and perhaps many more. They proceed upon a variety
of different contrivances; but, when analysed, and the real object
gained is viewed apart from the process that led to it, FERRARIS,
which is the oldest, and does not require the extinction of the
second term, will be seen to produce the cubic (2°— qx* 4
Pr— 45\t —p*s + 495 —1r"=o0); and Des CARTES’s, which
supposes the second term to be first destroyed, terminates in
the cubic-formed equation of the sixth degree (z°— 2qz* -
mx’ —r*==0). The rest produce cubics, or cubic-
formed sixth powers, whose roots are some parts or multiples
of this last; except WaRrInG’s method, which does not expunge
the second term, and therefore produces a cubic whose roots
‘are parts of the first. But, whether the resulting equation be

* Waring’s Medit. Algeb. p. 133.
+ Ibid. p. 138; and the Appendix to Dr. HutTon’s Dictionary.
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that of the function, formed by summing the combinations by
two of the roots in pairs, or summing the roots themselves in
pairs, or the equation of the halves, or quarters, or doubles,
trebles, &¢. of those functions, is immaterial ; no new function
is employed, no other principle put in action, than what is de-
rived from.the general properties of this degree of quantities
here explained.

$1. Biquadratics being generally thus reducible to cubics, of
course, by resolving those cubics, distinguishing what function
their roots are of the roots of the original biquadratic, they may
all be found ; and, for practical utility, there is no preference to
be made of either of the two methods ; for, the first, though a
real cubic, being formed from products of the roots, it requires
a quadratic equation to obtain them after the cubic is resolved ;
whereas the second, though an equation of the sixth power,
being formed from simple addition of the roots, gives them at
once. But, as both these cubics necessarily have all their roots
real, when those of the given biquadratic are so, and the reso-
lution of cubics is in that case imaginary, it follows, that no
biquadratic baving all its roots real, can admit of a real solution
by either of these methods.

g2. The formula expressing the actual resolution of a biqua~
dratic has not been given ; the writers upon algebra going no
further than to point out the cubics by means of which such a
resolution may be obtained. To be sure, such a formula would
be very long, and (till the imperfection in the cubic resolution,
which must make a large part of it, can be removed,) embar-
rassed with radicals, so as to be of little practical use; but it
would be a valuable accession to the theoretical part of algebra,
to have the analysis of this degree carried as far as that of the
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preceding, by developing every part of the functions that enter
into the resolution, so as to be able to compose it at once, or
make a complete reduction of the equation, without the inter-
vention of any other steps.

83. Let (n) be taken = (5), or any higher number. Here, the
number of differences is increased to twenty ; and, the higher
we go the more they increase, so that a direct simple resolution is
out of the question. Nor are we yet acquainted with any pecu-
liarity attending five, or any higher number of quantities, upon
which we can ground a relation to eflect a reduction of any
sort; wherefore, no method is known for equations of this and
the higher orders. 'Whether any may ever be discovered, it is
not easy to pronounce: if the reasoning from Art. 8 to Art. 15,
of this Paper, be correct, there can be no chance, until some pe-
culiar property of quantities of this class can be hit upon. It is
perhaps a discouraging presumption against the existence of any
such property, that no art nor labour has hitherto afforded the
least clue to lead to one; but, on the other hand, it is impossible
to tell what general properties of quantity may remain to be dis-
covered ; and, from the great distance the peculiarities of the
degrees we have treated of lie from the surface, and their total
want of order or connection with each other, it may be justly
expected those of the higher degrees may lie still more de-
tached and remote, beyond any efforts that have yet been made
upon the subject. The proper method to proceed seems there-
fore to be, abandoning all projects for the general resolution of
equations, to investigate regularly the abstract properties of each
separate order or number of quantities, turning them into all shapes,
sifting all their combinations, and constructing and examining the
equations of different complex functions of them, in order to see

Rr e
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if latent peculiarities be not to be traced out in some of them.
‘Wherever any distinguishing property is found, it will, by the
principles here explained, infallibly lead to some method for the
degree to which it belongs; and, whoever may be fortunate
enough to discover any such property, in five, six, or any
higher order of quantities, will have the honour of removing
the important-and hitherto impenetrable barrier, which has so
~ long obstructed the farther improvement of algebra.



